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Abstract: This paper describes the design and realisation of an on-line learning pose-tracking
controller for a three-wheeled mobile robot vehicle. The controller consists of two
components. The first is a constant-gain feedback component, designed on the basis of a
second-order model. The second is a learning feedforward component, containing a single-
layer neural network, that generates a control contribution on the basis of the desired
trajectory of the vehicle. The neural network uses B-spline basis functions, enabling a
computationally fast implementation and fast learning. The resulting control system is able to
correct for errors due to parameter mismatches and classes of structural errors in the model
used for the controller design. After sufficient learning, an existing static gain controller
designed on the basis of an extensive model has been outperformed in terms of tracking
accuracy.
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1. INTRODUCTION

Conventional approaches to designing a controller are
based on a mathematical model of the system to be
controlled. In some situations, this system may have
time-varying parameters, such as the payload mass or
friction of a robot manipulator. In this case, the use of
adaptive control systems enables considerable
improvements to be made compared to conventional
controllers (Berghuis, 1993). Nevertheless, the
controller is based on a mathematical description of the
process.

In many practical systems, parts of the process model
are hard to describe mathematically. Friction effects are
an example of such a phenomenon. Coulomb friction,
for instance, may depend on unmeasured parameters,
like payload, oil temperature in the bearings or wear. In
addition, not only the amplitude but also the shape of a
function describing the effect may change. Appropriate
compensation for such effects on the basis of an

accurate mathematical description is either impossible
or involves extensive modelling and identification
efforts.

Recently, neural networks like the multilayer
perceptron (Rumelhart et al., 1986) and radial basis
function networks (Poggio and Girosi, 1989), have been
introduced in the control field. These networks are able
to approximate a non-linear continuous function using
large numbers of identical basis functions. Their
application in the control field has triggered the
suggestion that these networks could be used for
approximating the unknown parts of the process model.

The approach taken in this paper combines the
robustness and easy design of a PD-feedback controller
with a learning control strategy for improved tracking
performance. A feedback controller is designed on the
basis of a simplified model. This controller must have a
sufficiently large stability margin to be robust for the
possible shortcomings in the a priori model. This
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results in lower feedback gains, i.e. larger tracking
errors. A learning feedforward part is added which
gradually reduces these tracking errors. In this way, a
controller, obtained with limited modelling and design
effort, is provided with a learning component which is
able to enhance performance.

2. THE PROCESS: A MOBILE ROBOT

The process to which the learning controller is applied
is the Mobile Autonomous Robot Twente (MART). The
MART is the result of a mechatronic design project in
which a new, flexible assembly-line concept is worked
out. Multiple mobile robots can collect parts from
supply stations and assemble these parts, if necessary
during driving. (Schipper, 1991) Within this case
study, the tracking control of the position and
orientation of the vehicle will be considered. The
vehicle has three wheels, two of which are driven
independently. The third is a castor wheel, that is able
to rotate freely. The vehicle consists of an upper frame
and a lower frame connected by air springs and
dampers to obtain a proper suspension for the
manipulator. (Graaf, et al., 1993)

2.1. Coordinate definitions

The geometry of the vehicle and the coordinate
definitions for the vehicle moving in a plane, are shown
in Figure 2. Figure 2a shows a schematic top view of
the vehicle, consisting of the outline and the three
wheels, including the centre of gravity. In order to
specify the motion of the vehicle, it is convenient to
define the pose of the vehicle as the position together
with the orientation. Figure 2b shows the pose p  of the
vehicle in coordinates of a world-fixed frame
p x yw w w( , , )ϕ , together with linear velocity v  (in m

s-1) and the angular velocity ω  (in rad s-1). Figure 2c
shows the definition of a coordinate frame fixed to the
vehicle. The subscript w indicates a representation in
world-fixed coordinates. The subscript veh is used for
vehicle coordinates.

Fig.2. Vehicle geometry and coordinate definitions

When moving along a trajectory, a path generator
provides the vehicle with a reference trajectory in
world-fixed coordinates. The reference trajectory
consists of the desired pose p x yref ref ref ref= [ , , ]ϕ ,
velocities [ , ]vref refω  and accelerations [& , & ]vref refω . The
actual pose pmeas  and the actual velocities are
measured by a measurement system that combines
intermittent accurate position fixes with odometry
(Oelen, 1995). The difference between the reference
and measured poses is the pose error: ∆p p pref meas= − .
The pose error can be expressed in world coordinates as
well as vehicle coordinates. Representing the pose error
in vehicle coordinates is most convenient, as ∆xveh

equals the error in the driving direction, ∆yveh equals
the lateral error, and ∆ϕveh=∆ϕw is the orientation error.

2.2. A-priori model

For the design of the control system, a simple model of
the vehicle is used. The model describes the dynamic
behaviour of the vehicle in two dimensions. The
following physical properties are assumed to be known:

M =500 [Kg] the total mass of the vehicle
J = 60 [Kgm2] moment of inertia around centre of

mass
b=0 30. [m] half the distance between the driving

wheels (fig. 2)
h=0 42. [m] the distance of the wheel axis with

respect to the centre of mass (fig. 2)
d =14. [m] the length of the vehicle (fig. 2)

A dynamic model based on this information is given
by:
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with Fl  the actuator force on the left wheel and Fr the
actuator force on the right wheel, in [N]. Fl  and Fr
are the control input signals.
Note that this model does not include details of the
actuators, friction effects, the presence of the castor and
the presence of an upper and a lower frame in the
vehicle.

Fig. 1. The Mobile Autonomous Robot Twente
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2.3. Constraints on the implementation

The specifications for the MART provide some
practical constraints on the implementation of a
controller. The constraints with respect to the vehicle
motion are (Oelen, 1995):
maximum linear velocity: vmax .=10 [m/s]
maximum linear acceleration: & .maxv =10 [m/s2]
maximum angular velocity: ω max .=10 [rad/s]
maximum angular acceleration: & .maxω =10 [rad/s2]
The actuators are sufficiently powerful to achieve these
maxima.
The position tracking error of the vehicle is defined as:

∆ ∆ ∆r x y= +2 2

where ∆x and ∆y are the position error components,
either in world coordinates or in vehicle coordinates.
After learning, the learning feedforward controller
must satisfy the following requirements on the tracking
errors.

during driving at high speed: ∆r ≤100 [mm]
during slow driving: ∆r ≤10 [mm]
orientation tracking error: ∆ϕ ≤0 02. [rad]

The positioning accuracy of the vehicle at the final
position is defined as the position error immediately
after arrival. The required final position accuracy: ∆r ≤
10 [mm].

The control signals (wheel forces) should be continuous
functions of time with a bounded time derivative. This
constraint is to ensure a smooth vehicle motion, thereby
enabling the manipulator to work accurately during
driving.

Because of the other tasks to be carried out, the control
algorithm must share a single T800 transputer with the
path generator and the odometry. The required
sampling frequency is estimated to be equal to 200
[Hz]. The control algorithm may occupy up to 700
Kbytes of computer memory.

3. CONTROLLER DESIGN

The design of the control system will be divided into
two main parts. First, the model-based part will be
designed on the basis of the a priori available model.
Second, the design of the learning feedforward
controller is described. Figure 3, which shows the
resulting controller scheme, should be used as a
reference throughout this section.

3.1. The model-based controller

As a result of the wheel configuration of the vehicle, no
motion is possible in the lateral direction. This is called

a “non-holonomic” constraint. A solution to this
problem (Oelen and Van Amerongen, 1994) can be
found by introducing a corrected orientation error ∆z ,
defined by

      ∆ ∆ ∆z y sign vveh veh ref= + ⋅α ϕ ( )           (2)

where α  is a positive constant which can be chosen
equal to the inverse of the vehicle length. (Thus,
α = ≈1 1/ d ). Controlling the vehicle such that
∆ z → 0  will reduce the lateral error while driving
along the trajectory. The vehicle requires a fixed
covered distance, determined by α  and independent of
the vehicle’s velocity, to reduce the lateral error by a
certain factor. This property is called the “geometric
convergence” of the lateral error (Oelen and Van
Amerongen, 1994).

The feedback controller has been designed by
considering the model given in eq.(1). As the errors of
the model-based controller will be reduced by the
learning component, the demands on feedback tracking
performance are not high. For this reason, the feedback
parameters have  been chosen sufficiently small to
obtain a safe stability margin. Also, an additional
simplification has been allowed by disregarding the
coupling between the translating and rotating motion of
the vehicle, resulting in
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This allows translating and rotating motion to be
considered as two independent linear second-order
systems. For each of them, position and velocity
feedback can be applied. One feedback controller uses
the error in driving direction, ∆xveh . The other uses
the corrected orientation error ∆ z . The controller
equations, where the subscript fb indicates feedback
contributions to the actuator forces, are given by:
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By substituting (4) in (3), the following closed-loop
transfer functions are obtained.

( )

( )

x
x

K sK

Ms sK K

M K s K

s s

K sK

J s sK K

J K s K

s s

ref

px dx

dx px

dx px

x x x

ref

p d

d p

d p

=
+

+ +
=

+
+ +

=
+

+ +
=

+
+ +

−

−

2

1

2 2

2

1

2 2

2

2

ζ ω ω

ϕ
ϕ ζ ω ω

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ'

'
    (5)



1224 J.G. Starrenburg et al.

In order to stay below the resonance frequency of the
vehicle suspension of 3[Hz], the natural frequencies
ω x and ω ϕ are chosen approximately ten times lower.
The dampings ζ x and ζ ϕ  are chosen to be at least 0.7.
The following values have been taken.
K N mpx = ⋅2 103[ / ] K Ns mdx = ⋅2 103[ / ]

K Npϕ = ⋅2 103[ ] K Nsdϕ = ⋅2 103[ ]
The resulting pole-zero images indicate a stable, well-
damped closed-loop behaviour for both systems.

The model used for design of the feedback can also be
used to extend the control law with a model-based
feedforward component. Equation (1) is rearranged
such that Fl  and Fr  are given as explicit functions of
the (reference) path, yielding the feedforward control
law given below. The subscript ff indicates feedforward
components of the actuator forces.
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3.2. Design of the learning control component

In Section 3.2.1, the reason for using feedforward
learning is explained. In 3.2.2, convenient feedforward
inputs are deduced. Section 3.2.3 presents the learning
criterion. Sections 3.2.4 and 3.2.5 motivate the choice
of the neural network and describe the chosen network.

3.2.1. Why feedforward learning?
In a tracking control system, learning can take place
either inside the feedback loop (for instance by
adaptation of the feedback gains) or outside the
feedback loop, resulting in feedforward learning. As the
stability of the controlled system is determined by the
feedback loop, feedback learning may endanger
stability. When the structure of a model of the process
is known, stable feedback learning or adaptation
mechanisms can be constructed. In this case study,
incomplete knowledge of the structure of the plant has

been postulated. For this reason the feedforward
approach has been chosen.

3.2.2. Inputs and outputs
The model-based feedforward given in eq.(6) already
indicates that the required control signals depend
strongly upon desired velocities and accelerations.
Friction effects are also a function of the vehicle
velocities. The dynamic behaviour of the vehicle is
independent of the vehicle’s position and orientation.
This is expressed in the following equation:

( )F f v vff ref ref ref ref= , , & , &ω ω     (7)

The learning feedforward will have two outputs,
corresponding to the force contributions for the two
actuated wheels. Note that by explicitly applying the
first two derivatives of the reference pose, a static
mapping between the inputs and outputs of the
feedforward component results.

3.2.3. Learning-error measure
Ideally, the total feedforward structure should
eventually contain the mapping from the desired
velocities and accelerations to the corresponding
control signals, such that there are no tracking errors if
these control signals are applied to the process. As long
as this mapping is not perfect, tracking errors will
occur which will be compensated for by the feedback
controller. Therefore, the feedback control signals have
been used as the output error measure for the learning
feedforward structure. When learning proceeds
sufficiently slowly, feedback signals caused by
disturbances or noise will have no significant effect on
the learning process.

3.2.4. Choice of network
The chosen inputs and outputs allow the use of a static
structure for the learning feedforward controller. The
(possibly non-linear) mapping from
reference velocities and accelerations to forces will
have to be learned. Recall that the constraints on this
design choice (on sample frequency, memory usage and
smoothness of the mapping) are mentioned in Section
2.3 The following mappings have been considered.

Fig.3.Learning feedforward control combined with model-based control



Learning Feedforward Controller for a Mobile Robot Vehicle 1225

• A lookup table can be used to implement a non-
linear mapping. The output signals will be
discontinuous functions of the inputs, which is not
satisfying.

• A single-layer spline-network (Brown and Harris,
1991) consists of a single layer with many units,
each containing a B-spline basis function. The
network output is a weighted combination of these
basis functions. Spline functions are polynomial
functions, which can be evaluated efficiently. The
order of the spline functions determines the
smoothness of the mapping. Splines have a
restricted domain on which they differ from zero.
For learning or reading the network, only the
parameters corresponding to splines with non-zero
contribution need to be addressed, resulting in an
efficient implementation.

• A radial basis function network (RBF) (Poggio and
Girosi, 1989) consists of a single layer with many
units, each containing radial basis functions, e.g.
Gaussian functions. The structure resembles the
above-mentioned spline network, but the basis
functions used are different. Gaussian functions
take more time to evaluate than spline-functions
and do not have a restricted domain on which they
differ from zero. This results in a much larger
number of parameters to be addressed for learning
or reading the network. The properties of Gaussian
functions enable the proof of certain network
properties, whereas spline functions prohibit this.

• A multilayer perceptron (MLP), (Rumelhart et al.,
1986) significantly reduces memory usage
compared to the previous alternatives. On the other
hand, MLP's learn very slowly compared to single-
layer networks and give a less accurate mapping in
terms of mean-squared output error (Van Luenen,
1993). Therefore, this option has been rejected.

The sampling frequency constraint requires a fast
implementation, indicating that the use of the single-
layer spline network is to be preferred over an RBF
network.

3.2.5. Single-layer spline network
A single-layer spline network can be used to realise a
static mapping between k  inputs x xk1....  and a single
output y , on a bounded domain of the input space.
This is achieved by placing a finite number of basis
functions, B-splines, on this domain. The desired
mapping is represented as a linear combination of these
basis functions.
An n-th order B-spline function consists of pieces of (n-
1)th order polynomials, such that the resulting function
is (n-1) times differentiable; a linear combination of n-
th order splines is also (n-1) times differentiable. Figure
4 shows examples of one-dimensional B-spline
functions. A spline function differs from zero over a
finite interval.
On each input axis, one-dimensional spline functions
can be defined. A grid gxi  is specified on each input

axis xi . The number of grid points specified on input
axis xi  is indicated by nx i . A possible grid definition
with corresponding splines is shown in Figure 5 for
second-order splines and nx = 6 . Multidimensional
spline functions can be constructed by mutually
multiplying the spline functions defined on the
different axes. These are indexed b xi ik1. ... ( ) . The
following property holds for all x x xk= [ ]1L  within the
domain of the mapping
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Each of these multi-dimensional functions can be
assigned a weight wi ik1. . . . . The output of the network is
defined by

y x b x w
i n

i n

i i i i
x

k xk

k k
( ) ( )= ⋅

≤ <

≤ <

∑
0

0

1 1

1 1

L

L L
           ( 9)

By assigning the appropriate values to the weights, a
desired target relationship between x  and y  can be
approximated. If the number of basis functions is
increased, this approximation will be more accurate.
Consider an input x  together with a desired output
y xt ( ) . When the weights are adjusted according to the

following learning rule, the actual output will approach
the desired output.

w w y x y x b xi i new i i old t i ik k k1 1 1L L L, , { ( ) ( )} ( )= + ⋅ − ⋅γ   (10)

with learning rate γ satisfying 0 2< <γ . Only a
limited number of the b xi ik1L ( )  are nonzero for a
given input x . Only those weights corresponding to
nonzero basis functions need to be adjusted every
learning step.

Fig.4. examples of spline functions

Fig.5. example grid with corresponding splines

This computational efficiency is a significant advantage
of the use of B-splines over radial basis functions.
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3.2.6. Single-layer spline network for the MART
To obtain continuous control signals with bounded time
derivatives, at least second-order splines are required.
Higher-order interpolation (and hence additional
smoothness) can be obtained at the cost of extra
computational efforts. A decision was made in this
work to experiment with second- and third-order spline
functions.

As the learning controller structure for the MART has
two outputs, two single-layer spline networks have been
applied in parallel. The two networks can have the
same basis function grid definition. This results in a
fast application, as the basis functions have to be
evaluated only once. To calculate the B-splines, the
recursive algorithm mentioned by Brown and Harris
(1991) has been implemented, given by:
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where b xi j, ( )  is the i-th spline function on input axis
x, of order j (j≥1). Note that the computation of higher-
order splines (j>1) requires additional grid points
outside the border values of x.

The memory requirement of the network is determined
by the number of B-splines used. This is a rather
arbitrary choice, since knowledge about the mapping
that is to be learned is considered unknown. Recall
from section 2.3 that 700 Kbytes of memory is available
for the controller software. In the experiments, two
network sizes have been tested: a small network with 9
B-spline functions per input variable, and a larger
network with 19 B-spline functions per input. Due to
restrictions in the path-generator algorithm, only
positive linear velocities could be obtained, implying
that the number of basis functions for this input could
be reduced to 5 for the small and 10 for large network.
Hence, the total size of the small network became 5*93

= 3645 spline functions. Since the controller has two
outputs, the total number of spline weights to be stored
equals 2*3645=7290. This results in 29 Kbytes of
memory usage if a 32-bit floating-point number
representation is used. The large network contains

2*193
*10=137.180 spline weights, requiring 536

Kbytes.

The B-splines are placed on the input space according
to a predefined grid which is shown in Figure 6.
Because the placement could be critical for the small
network, it was not taken as homogeneous. Since the
specifications require a higher accuracy for low
velocities of the vehicle, the placement for velocities
has been changed accordingly.

The feedback signal is used as the measure of learning
error, meaning that y x y xt( ) ( )−  in eq.(10) is replaced
by the feedback signal u tfb( ) . If this learning rule is
applied every sampling interval, an increase in the
sampling frequency of the controller will imply a
proportional increase in the effective learning rate.
Therefore, a sampling-frequency-independent learning
rate ξ [ ]s − 1  is introduced, and the learning rule
becomes:

w w t u b xi i new i i old fb i ik k k1 1 1L L L, , ( ) ( )= + ⋅ ⋅ ⋅ξ ∆   (12)

where ∆t is the sampling interval in seconds. An
appropriate value for ξ depends on the network size, as 
ξ can be interpreted as the number of weights that can
be learned per output per second. Appropriate values
for ξ have been determined by trial and error, resulting
in ξ=4 for the small network and ξ=20 for the large
network.

4. SIMULATION RESULTS

The control scheme as proposed in the previous section
has been fine-tuned in simulation. A simulation model
has been obtained by extending eq(1) with friction
effects on the two driven wheels. The friction on the
castor wheel has not been included. The friction force
Ffr  is assumed to consist of viscous friction (linear in
the velocity) and Coulomb friction (depending on the
sign of the velocity), given by

F v b sign v b

F v b sign v b
fr l

fr r

,

,

( ) ( )

( ) ( )

= ⋅ − + ⋅ −
= ⋅ + + ⋅ +

20 40

20 40

ω ω
ω ω

       (13)

Note that v b− ω  and v b+ ω  represent the velocities of
the left and right wheels (see Figure 2).

Fig.6. grid definition for both networks
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A series of six closed trajectories has been used to test
the motion control of the vehicle. The paths are closed
in order to simplify later experiments on the real set-up.
The trajectories are shown in Figure 7. The dots along
the trajectories indicate time instances t n , such that
t0 0= , t f is the total time in which the trajectory is
covered and t t nn f= ⋅ / 30 . As a result, the distance
between two successive points provides an indication of
the velocity along the corresponding part of the
trajectory. The average velocities with which the
trajectories are covered are as high as the restrictions
on velocities and accelerations allow.

To investigate the learning ability of the controller, in
addition to the wheel friction, parameter mismatches
have been included in the simulation model:

simulation model : controller design model:

M kg
J kgm
h m

=
=
=

400
40
0 20

2

[ ]
[ ]

. [ ]
  instead of

M kg
J kgm
h m

=
=
=

500
60
0 42

2

[ ]
[ ]

. [ ]

Fig.7.Test trajectories

Experiments investigating the influence of network size
and spline order were performed both in simulations
and on the actual setup. The results are similar in both
cases. A single simulation will be presented for later
comparison to measurements obtained on the real
setup.

Starting with zero initialisation of the small network,
trajectory F has been covered repeatedly. Figure 8
shows the resulting position-tracking error for the small
network, using second-order splines, during the 1st, 3rd
and 10th coverages of F. The vertical line indicates the
end of the time for covering the trajectory. Figure 9
shows the maximum and average position tracking
errors along F as a function of the number of times the
path has been covered.

Figure 9 shows a drastic decrease in tracking errors,
due to learning. The position error upon arrival is
finally within the specified boundary of 10 mm. After
arrival, the nonzero position error causes the learning

controller to integrate the feedback control signal, due
to which the error in driving direction approaches zero.
Because learning is slow, the integration effect does not
produce overshoot. The lateral error cannot be
influenced by this effect due to the non-holonomic
motion constraint of the vehicle.

The results indicate that the proposed learning
controller is able to compensate for the effects of
friction and parameter mismatches. Starrenburg (1993)
showed that the learning behaviour does not suffer
noticeably from the presence of a considerable amount
of sensor noise.

Remark: The simulation experiments revealed a
boundary condition problem in the path generator,
resulting in improper reference signals at departure.
This caused minor (5 mm.) positioning errors just after
departure. The learning controller gradually decreased
these errors as well.

Fig.8. Simulated tracking errors along F

Fig.9. Simulated learning effect along F

This illustrates that the use of a learning controller may
include the risk of compensating for unknown aspects
of the system, resulting in a working solution but
without providing an insight about what is actually
learned.
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5. EXPERIMENTAL RESULTS

This section gives a summary of the experiments on the
actual MART. For a more detailed description, the
reader is referred to (Van Luenen, 1993) and
(Starrenburg, 1993).

The learning behaviour during repeated coverage of
trajectory F was considered using the small and the
large network with second-order splines (Figure 10 and
11).

Fig.10. Experimental results while repeatedly covering
F with the learning controller containing a small
network

Fig.11. Experimental results while repeatedly covering
F with the learning controller containing a large
network

The results show that the learning controller indeed
reduces the tracking errors significantly during
learning. Comparing Figure 8 to Figure 10 shows that
the errors during the first trial on the actual vehicle are
larger than in simulation, while the shape of the error
curve is similar. This indicates that the dynamic
behaviour of the actual vehicle is similar to the
dynamic behaviour of the simulation model; the friction
parameters in the simulation model apparently were too
small.

To compare the two networks, the errors obtained
during the 15th trial for both the small and the large
network have been compared. The errors of the large
network are roughly a factor of two smaller than the
errors of the small network. This confirms the intuitive
impression that the accuracy of the network is
proportional to the number of applied basis functions
per input. However, it also shows that the number of
basis functions increases rapidly if considerable
increases in accuracy are required.

Fig.12. Experimental results demonstrating
“forgetting”

The next experiments consider ‘generalisation’ and
‘forgetting’ phenomena. In the first experiment, the
tracking error was recorded while covering F for the
15th time. Subsequently, trajectories A through E were
driven and trajectory F was driven once again while
recording the errors. The results for the large network
are shown in Figure 12. These results indicate that by
driving along various trajectories, a loss in accuracy
may be obtained due to ‘forgetting’. However, the
resulting tracking error doesnot exceed 18 mm. The
small network resulted in an error of less than 45 mm.
Hence, the reduction of the ‘forgetting’ effect obtained
with a large network is considerable.

In a second experiment, trajectory F is covered three
times, once with zero initial values, the second time
after having gained experience by driving the paths A
through E and the third time after having driven A
through E three times. Figure 13 shows the tracking
errors along F. It shows that the experience from
covering trajectories A through E is ‘generalised’ and
improves the result on trajectory F.
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Fig.13. Experimental results demonstrating
“generalisation”

The influence of the order of the spline function used in
the network on the controller performance has also
been tested. Second- and third-order B-splines have
been compared. Experiments showed that the order did
not significantly influence either the accuracy obtained
or the behaviour of the vehicle during tracking. The
influence on the achievable sampling rate was
significant; with second-order splines 340 Hz. could be
obtained, while the use of third-order splines reduced
this to 220 Hz. An inspection of the control signals
gave no evidence that the third-order splines yielded a
smoother control signal. However, this inspection was
hampered by the fact that, due to computer restrictions,
only one out of 25 samples was available for inspection.

In order to relate the performance of the learning
controller to other control approaches, a comparison
has been made with an existing feedback controller
based on a detailed model of the vehicle (Oelen and
Van Amerongen, 1994). For this experiment, both
controllers have covered trajectory F. The tracking
error displayed for the learning controller was obtained
after 15 trials along the trajectory. Figure 14 shows that
the learning controller is able to outperform the
feedback controller, approximately by a factor of 2,
after sufficient exercise. Comparing Figure 12 with
Figure 14 reveals that the feedback controller still beats
the learning controller, approximately by a factor of 2,
when arbitrary paths are covered.

Remark: During the experiments it was observed that
the driving performance of the learning controller was
very smooth compared to the feedback controller, due
to the lower closed-loop stiffness of the former. For the
MART, smooth driving behaviour

Fig.14. Experimental comparison with a feedback
controller based on a detailed model

is advantageous for the performance of the manipulator
on top of the vehicle.

6. CONCLUSIONS

This case study demonstrates the feasibility of an on-
line learning control system using neural-network
concepts. The controller design was based on a model
of the vehicle that was known to contain structural and
parameter errors, but provided a stable feedback
controller.
The learning feedforward controller was tested in
simulation against a more detailed model to investigate
its robustness against structural errors due to non-linear
friction, parameter errors and noise. The simulations
made plausible that relatively small networks,
containing spline functions, are able to provide an
effective compensation for these errors. The
experiments on the real set-up confirm this.
The advantage of the learning feedforward controller
described in this paper, is that with little modelling a
surprisingly good controller can be obtained. However,
a consequence of this approach is a lower closed-loop
stiffness, as the feedback component of the controller is
designed on the basis of an inaccurate model. This
turns out to be advantageous for this application, as it
results in smooth driving behaviour.

A single-layer spline network is computationally
efficient compared to radial basis function networks or
multilayered networks. This allows a high sampling
frequency in a digital implementation. However, if the
desired accuracy of the spline network increases, the
memory requirements increase drastically.
Experiments revealed that the use of higher-order
splines noticeably improved neither the tracking
accuracy nor the smoothness of the control signals. The
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achievable sampling frequency decreases significantly
with increasing spline-order.

Presumably, the method can be utilised to enhance the
performance of any feedback tracking controller in
cases where the derivatives of the reference outputs are
explicitly available. Therefore, in a future experiment
the learning feedforward controller presented here will
be combined with a feedback controller, designed on
the basis of full a priori knowledge.
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