TRANSPUTER BASED CONTROL OF MECHATRONIC SYSTEMS

Andrew P. Bakkers and Job van Amerongen
Mechatronics Research Centre Twente and
Control Laboratory, Department of Electrical Engineering, University of Twente,
PO. Box 217, 7500 AE Enschede, Netherlands ,
e-mail: elbscbks @ henuts.bitnet

Abstract. The design of a contro! system Is not finished with the derivation of the necessary control algorithms. The system
designer has to schedule all control and calculation tasks within the sampling interval of the system. Higher sampling
frequencies often Improve the system performance. On the other hand, more sophisticated control algorithms require
more computing time thus reducing the obtainable sampling frequencies. In this paper a systematic approach to obtain a
design optimum Is given. The design method is illustrated with the control of a flexible robot arm.

Keywords. Parallel processing, Real time computer systems, Control engineering applications of computers, Robot

., control, Transputers, Occam.

1 INTRODUCTION

Recently the systematic application of advanced control algorithms to
mechanical systems has been given the name "mechatronics". This term
originates from Japan, where in 1989 the first International Conference
on Advanced Mechatronics was organized by JSME (1989). In a me-
chatronical design it is continuously considered whether the desired
properties can be better realized by changing the mechanical construc-
tion or by adding electronic control, rather than adding the control
system after finishing the design of the construction. This enables the
design of systems with superlor performance. Typical examples of
mechatronic systems are, for instance, a compact disc player and an
advanced photo camera with many electronic functions. Also robotics
can be considered as part of mechatronics.

For the realization of a mechatronicat system, advanced controt algo-
rithms and fast computer systems are needed. Because mechanical
systems have very fast dynamics, a high sampling frequency Is essen-
tial. Conventional, sequential, computer systems are too slow. By using
parallel computing, the sampling frequency can be increased and more
complex control algorithms can be realized. However, the use of parallel
computing requires that the total concept of the realization of a real-time
digital controller be reconsidered. This paper gives a systematical
analysis of the problems which are met when a real-time parallef
computer system is to be set up and gives solutions to various of these
problems.

Although the Ideas presented are more generally applicable, main
emphasis will be given to the use of transputers. The transputer is a new
type of processor which was designed to be used in parallel. Simul-
taneously with the development of the transputer a new parallel pro-
gramming language has been developed: OCCAM. Together they have
properties which make them especially attractive for the realization of a
real-time parallel computer system. It may be expected that the trans-
puter and other future parallel processors will have a great impact on
the realization of advanced control algorithms with a very high sampling
rate.

In Section 2 a description of the transputer and a short Introduction to
OCCAM will be given. Section 3 discusses the requirements for a
scheduler in a real-time control system. It will be argued that at present
there are no computers nor operating systems which are able to
guarantee that the scheduling of the various tasks in a control system
{sampling, computations, data logging etc.) are handled correctly. A
suggestion for an optimal solution will be presented and it will be
indicated how a sub-optimal solution can be realized.

One of the typical features of the transputer Is that it has four external
links which enable a fast data exchange to other transputers. This forms
not only the basis for the parallel architecture of a transputer-based
computer system, but it also enables a systematic design of a digital
controller into various layers such as an interface layer, a protection
layer a control layer etc.. This concept is worked out in Section 4. In
Section 5 the concepts developed in this paper will be illustrated with
an example of a typical mechatronical system, a flexible manipulator,
where the inevitable vibrations are actively damped by a parallel control
system realized with four transputers. A robust state-feedback control-
ler, designed with a pole ptacement technique, is able to give the
controlled system the appearance of a rigid construction. In order to
exploit the parallel features of a transputer network, the controller has
to be writtenin a parallel form. Various forms of parallelismare discussed

in Sections 4, 5, and 6. They range from a general-purpose form of
parallefism, where the program is split up into basic elements which can
be calculated in paralie!, to a much coarser form of parallelism, where
ad hoc some large parallel parts are selected. The performance of the
transputer-based control system with various types of paraflelism will
be compared with a controller realized in conventional, sequential
hardware. The paper concludes with some conclusions and sugges-
tions for future research in this area.

2 THE TRANSPUTER AND OCCAM

One way out of the cafculation versus sampling time dilemma has for
long been sought in the use of parallel computing. In the past, many
attempts to realize parallel systems with tradilional processors, have
failed due to the software overhead
burden. The theory of Communicat-
ing Sequential Processes by Hoare
(1978) forms the foundation of the

FLOATING POINT UNIT

- programming language Occam.
CPU 32bit .=4={ Link | Occam uses the concept of
4 Kb RAH processes. Communication between
Channel processes Is done by means of chan-
protocol nels. Due to the synchronization prop-
T erties of these channels the restriction
Scheduler =LLTI—] to one processor nolonger exists. The
Iow |high transputer hardware development
Fptr [Fptr was the next logical step. By using the
Bptr |Bptr —=={ Event | formal specification language Z, the

correct behavior of the implementa-
tion of the Occam constructs in hard-
ware was formally proven. The hard-
+ ware - software integration resulted in
Fig. 1%?;::?3;3{2 rOf the the transputer - Occam combination.
The transputer may be considered a
building block for parallel computers. Occam enables programming
across these parallel transputers.
In the following paragraphs the operation of the transputer will be
explained, based on the block diagram in fig. 1.
From this block diagram a number of significant elements of the trans-
puter chip can be identified.

External Memory Interface

1. Communication to other transputers is performed over
self-synchronizing high speed (20 Mbit/sec) serial links.

2. A round robin process (task) scheduler Is implemented In
micro-code realizing a process switching time of 1 yrsec.

3. Abuilt-in floating point co-processor realizing 1.5 MFLOPS.

4. Abuilt-in timer with an accuracy of 1 sisec. in high-priority mode.

5. Fast (50 nano-seconds) internal memory of 4 Kbyte.

2.1 The OCCAM process

The underlying idea of Occam Is the notion of a process. A process Is
a part of a program that starts, performs an action and then terminates.
The idea is that processes may be executed in parallel. The communica-
tion between processes is done via self-synchronizing channels. A
channel is a one way point-to-point connection from one process to

another. The processes may be located on different transputers. In that
case the communication over channels changes into communication
over links. There is no need for the programmer to worry about the
implementation of the channel or link protocol, because It Is Imple-
mented in micro-code on the transputer chip.

Examples of so-called primitive processes in Occam are:

x:=3 assigns the value of three to the varlable x
chan1 ?p takes a value from an input channel and puts it in p
chan21iq takes the value of g and outputs it over the channel

An Occam program consists of combinations of primitive processes, so
that a number of these primitive processes may be combined into a
larger construction. For this purpose Occam supports the following
constructs:

SEQ To indicate the start of
proct a series of sequential
proc2 processes.

PAR To indicate the start of
proci a series of parallel
proc2 processes.

Note that the indentation under the SEQ and PAR constructare syntactic
and are used to indicate the begin and end of the construct.

2.2 Channels and Links
In Occam the communication by means of channels or links looks like:

PROCESS-A chan.3 | PROCESS-B
Chan.1 ! var.x jan. Chan.1 ? var.a
TRANSPUTER-A Linc.a | TRANSPUTER-B
Link.2 ? var.y o Link.2 ! var.b

The input (?) and the output (!) processes may be considered as the
synchronization between processes running on transputers A and B. If
the process on transputer-A arrives at the input instruction on link.2 and
transputer-B is not yet ready to provide this output, the process running
on transputer-A will be de-scheduled until transputer-B signals that it is
ready to send the data over link.2. At that point the inputting process on
transputer-A is resumed and the data is transferred viafink.2. This results
in a synchronizing action between the processes running on different
transputers. In this way the transputer channels provide the necessary
system interconnection and synchronization. The only thing the pro-

grammer hasto do, Is to define the appropriate input and output actions. .

Internally the channel administration is kept in one memory word. This
memory word will contain the most negative value to Indicate that the
channel has not been called yet, or a value that is interpreted as a
workspace pointer of a (de-scheduled) process. The transputer chan-
nels may therefore be considered as a standard system Interface
because they provide the necessary system interconnection and syn-
chronization.

The fink concept is, identical to the channel concept, used to communi-
cate between processes located on different transputers. This unifying
link/channel concept Is very convenient during the system design and
check-out phase. Different hardware and software layers can be
developed independently as long as the software and hardware Inter-
face have been defined.

2.3 Interrupts

The transputer has an interrupt signal pin connected to the event
channel. This event channel is read identically to a link although no data
can be transferred. It can only be used to activate a process that is
waiting on an input (?) from the event channel. As soon as the event
channel is activated, the waiting process Is scheduled by inserting it at
the back of the ready queue in the low priority mode, or it may be
scheduled at once as a high priority process. The use of the transputer
interrupt signal is illustrated in the following Occam interrupt process
that is activated every time the event pinis triggered. The program starts
with the definition of the process name with the external channel
definition. The internal channel event is declared as the type ANY,
because there is no data transport over the event channel. This event
channel is associated with the actual hardware pin.

PROC Interrupt (CHAN OF INT16 output)
CHAN OF ANY event:
PLACE event AT event.in:
WHILE TRUE Do for ever loop!
SEQ Start sequential process
event ? any Wait for interrupt
...... execute handler code :

The transputer has one high-priority and one low-priority operating
mode. The interrupt process should preferably be executed in the high
priority mode in order to reduce the interrupt response time. Theoretical

response times of approximately 55 zsec. have been reported by Welch
(1987)

2.4 The Timer

The timer channel should also be considered an input channel. Times
of the internal running clock are obtained by reading the timer channel
and operating on the time value. The Occam code to use the timer is
ilustrated with the following SEQuential process that causes a delay.

PROC delay (VAL INT interval)
TIMER clock:
INT time:
SEQ
clock ? time
clock ? AFTER time PLUS interval :

Internally the timer queue dilters from the ready queue in that it is kept
sorted in the sequence of the wake up times of the different timed
processes.

2.5 The Scheduler

In addition to the channel protocol concept, there is another important
difference between transputers and other microprocessors. That is the
built-in scheduler. The transputer should be considered as handling
tasks or processes rather than machine instructions. These processes
are controlled by a built-in scheduler. The process administration Is the
main activity of the scheduler. The scheduler keeps track of the different
processes by administering a list of processes in an area of memory
that is called the workspace. The workspace of the current process Is
pointed to by the transputer register called workspace pointer. The
workspaces are linked together to form a queue. The scheduler keeps
track of four queues i.e. for each priority a ready queue and a timer
queue. The beginning and end pointer to a queue are maintained in the
transptiter registers called Front pointer and Back pointer. Workspaces
are added to the ready queue by reference to the back pointer and
workspaces are extracted by reference 1o the front pointer.

2.5.1 High-priority mode
The process (or task) scheduler can operate in one of two modes i.e.
the high-priority or the low-priority mode. In the high-priority mode the
executing process can not be interrupted by another process (non-pre-
emptive scheduling). De-scheduling can only occur when:

® a process Is completed

® communication with a channel / link is not (yet) possible

® the process waits for a timer to elapse

2.5.2 Low-priority mode

In the low-priority mode the processes are, by means of time-slicing,
scheduled in a round-robin manner. Here processes will be de-
scheduled by:

® completion of the process
@ awaiting link or channel communication
@ expiration of a time slice

The de-scheduled process will be added to the back of the ready queue
and the process from the front of the ready queue will be executed. The
time slice In a transputer is typlcally 1 msec. and the process switching
time Is of the order of 1 usec. .

In Occam the priority may be assigned using a PRlority addition to the
PAR construct.

No priority With priority

PAR PRI PAR
process.1 process.1
process.2 process.2

The processes 1 and 2 are executed In parallel, either both at the same
priority, or with the PRI PAR: process 1 will be executed in high priority
and process 2 inlow priority. The PAR process is only finished after both
processes have been executed.

3 A SCHEDULER FOR REAL-TIME CONTROL

3.1 The Sampling Process

The sampling process of a control system may, according to Bakkers
(1987), be divided into:

1. Time-bounded processes, such as the sampling or actuation actions.
2. Time-limited processes such as the calculation of the control action.
3. Background and alarm processes.

The time-bounded processes have to be scheduled at specific instants.
The time-limited processes should be scheduled to meet their deadline.
Synchronization between these processes Is required in order to
guarantee that the calculation is performed before the actual control
action takes place. If a control system can not inherently give this
guarantee the resulting misses of the correct synchronization should:

1. result in a non-detrimental control action.
2. result in error messages that are meaningful to the control engineer.
3. never cause a deadlock of the system.

3.2 Real-Time Scheduling

From the theory of real-time scheduling, Liu (1973) has defined the
optimum schedule for the execution of control processes: it is the
deadline driven schedule. A sub set of it is the monotonic rate schedule,
which may be used In the case of fixed priorities. An example of the
deadline driven scheduling rule is illustrated In fig. 2.

Sampling actions of processes 1,2 and 3:

1,2,3 1 1,2 1,3 1,2
| |] | |
Process 1:
J—— . . | S
Process 2: ‘l’
S I
Process 3: ‘l’
- . N RN | M

Fig. 2 Deadline driven scheduling

Note the position indicated where a fixed-priority monotonic rate algo-
rithm would have resulted in a selection of process 2 instead of process
3. In general a schedule of a number of different processes, may be
defined as:

Schedule = {Ti}, {ui}, {h}, {di}, {tai} (1)
where:
Ti = one of n processes
71 = the time to execute process Ti
Il = the period of process Ti
di = the time when proces di Is due
toi = start of scheduling process i

This may be illustrated as follows:

T11 Ti12 t
toi | f I
di | di

The deadline-driven algorithm assigns the processor, at each decision-
time, to the process whose deadline Is closest. A necessary condition
is caused by the fact that a processor at most may be kept busy all the
time or:

i P

=y i (2)
Although this is a necessary condition, it has not been proven that this
condition is also sufficient. Only for the sub case in which di = I was

proven that the necessary condition Is also sufficient. If we also make
the assumption that in a control system all sampling actions start at the
same time, we have the additional requirement of:

to = o &)

The optimum scheduling algorithm has not been implemented yet in
industrial real-time operating systems (Stankovic, 1988). The main
reasons is the computing effort necessary to keep the priority list of the
processes sorted at all times. This rule however plays an important role
in the manual scheduling of processes In the traditional control system

design. It must be stressed however that this optimum rule is defined
only for a single processor case.

With the transputer hardware it is possible to construct and program a
parallel machine. The question arises how the control system design
should be performed with such hardware. One should realize that the
process scheduler on the transputer chip is a round robin scheduler
whichinlow-priority mode performs a process switch about every msec.
There is also a high-priority mode in which the time slicing is disabled
50 that the processes run till completion or are de-scheduled due to a
wait for input or output. In order to realize deadline scheduling on a
transputer a scheduler that accomodates priorities will have to be
implemented.

In the ideal case, the realization of the priority ordering should be be
performed by a hardware ordering mechanism on the microprocessor
chip. A large humber of prioritles will have to be implemented. This will
result in a fine granularity of the priorities. Because in a deadline driven
priority system the priority axis is basically the time axis, this large
number of priorities results in a fine resolution of the time axis, together
with a reasonable cycle time for the total process cycle: of a few days.
In order to restrict the length of the priority sort list to an hardware-tech-
nical implementable value, the processes that are part of a set of
processes or tasks should get the same priority as their main process.
This allows the use of one process queue per priority class.

The scheduling for a deadline driven scheduler should be a preemptive
scheduler. This requires far more overhead than the present low-priority
scheduler, that schedules only on certain instructions, like a jump. Thus
ensuring that the data structure (stack) that has to be saved is minimat.
If this way of thinking Is adopted for the priority scheduler a so called
semi-preemptive scheduler will result that performs well within the
specification of the real-time requirements and also maintains a fast
process switch time. The proposed priority system should accommo-
date:

Time bounded processes at Hi-Priority preemptive
Alarm processes at High priority

Time limited processes at Medium priority

User process at Low priority
Background processes at Round-robin scheduler

Future implementation of a deadline driven scheduler for the time
bounded control tasks should be considered by the hardware manu-
facturers.

The assignment of the priorities is the task of the control engineer. He
will have to analyze the time requirements of the system processes
beforehand. If this extra work is not performed, the scheduler should
fall back on the lowest, or round-robin, scheduler without loss of
performance.

A sub-optimal solution Is the following. Allow encugh time for all the
time-limited tasks to be completed on time. Add a safety margin.
Because the completion of the tasks can never be guaranteed, timer
guards should be installed to detect processes exceeding the time limit.
A transputer timer process Is welt suited for this purpose.

4 SYSTEM ARCHITECTURE

The use of transputers in a control system design, necessitates the
design of a transputer network that reflects the parallelism of the
particular control system. There is no standard procedure to convert a
sequential problem into a transputer topology with a corresponding
parallel program. Therefore, the system architecture should be tailored
to the (control) problem. There are basically three methods to obtain a
parallel architecture i.e.

1. Parallelism by recognizing various layers. This is further worked out
below.

2. Ad-hoc based on the properties of the problem. In this situation it is
necessary to recognize dedicated parallelism of the control system. An
example of this technique is used with the controller for the flexible robot
arm that is described In Section 5.

3. By means of a mechanism that creates massive parallelism from
repetetive use of basic building blocks. For distribution of these blocks
over a number of processors a method developed by Hilhorst (1987),
should be used to obtain an optimal distribution of the tasks over a given
network. This Is described in more detall in Section 6.

As a result of experience gained in the realization of several transputer-
based control systems by Bakkers (1986) and Stavenuiter (1989), a
layered architecture Is proposed. The basic idea Is that there are several
layers in a practical control system as Indicated in fig. 3 for a robot
control system. A more detailed description of the different layers is
given below.

4.1 First Layer
The first layer consists of the hardware and software directly connected
to the sensors of the control system. It can be realized as the first
transputer layer. This interface layer includes, for example: Anatog-to-
Digital, Digital-to-Analog and Resolver-to-Digital converters.
The software of this
layer performs pri-

marily the sampling

Path planning |— and control action.
This layer Is also the

Motion control |— Test right place to perform
the necessary filtering

Axis control |— and of the measured data.
The processed meas-

Safety _IMonitoring| Urementsare available
at the link interface

| input and outputs.

Interface System Schematically the first
layer and its intercon-

Process - nglctlons to the second

layer and the monitor
and display may be

Fig. 3 Layer structure for a robot system
represented as in fig 4.

LAYER 1 | LAYER 2
A/D | Teaz2 .
|
RDC Taza ~———>——\————- ——‘ Tgoo |[—e>—
l ya
D/A | Te2 | | monrror
I T4 Display|l—e«—

Fig. 4 Layer 1 interconnections

4.2 Second layer

The second layer consists of transputers that execute the safety soft-
ware. This layer completely isolates the sensors from the rest of the
control system. Actual sensor data arrive here and may be compared
with the control signals to check whether the combination of the two
may lead 1o a dangerous situation. If so, the safety software has priority
and will set the control signals at a safe value. The topology of this layer
could include one or more transputers, as illustrated infig. 5. where T800
transputers are used.

LAYER 2
——
I > Tsoo >
> Tsoo IR]
I > Tsoo >

—ey 1

Fig. 5 Layer 2 the safety layer

4.3 Third layer
The third layer typically contains the first calculation layer, in robot terms
this could be the calculation of the robot dynamics. It is not very likely
that this calculation can be performed in one transputer. Therefore, as
an example, a transputer network of eight transputers Is given in fig. 6.
For the distribution of the code over this topology the method of Hilhorst
(1987) may be used. This method, based onthe list scheduling analysis,
also takes communication times via the links into account. By using a
critical path analysis, an (almost) optimum distribution of the various
processes over the different transputers can be obtained.

|

4.4 Testlayer

This layer collects the properly buffered test data and sends it to a
graphical display. It acts as a software test rig. The test data may also
include warnings for synchronization errors and sensor data. The syn-
chronization error messages enable the control system designer not
only to spot errors in the system design, but also assoclates these errors
with the exact location of the erred sampling or contro! process. Sche-
matically this layer may be represented as in fig. 7.

One has to realize that parallel programs can not be tested for correct
operation by the insertion of a number of write statements in the
program code. The channel concept is very powerful. Onthe other hand
it contains a possible danger. If the test data are not properly de-coupled
by a-synchronous buffers, the monitor and test unit may set the pace,
or worse, it may cause a deadlock of the control system.

I
Tsoo
[
— Ta14 Tsoo Ta1af—
I I
-— Ta1a Teoot— Ta14f—
I Tsoo

Fig. 6 Robot dynamics layer

a-synchronous & buffered

S 20 20 SR 8 S

Monitor & Test The software test rig

displa
play

5 CONTROL OF A FLEXIBLE ROBOT LINK

The ad-hoc paralieflism will be illustrated with the example of a flexible
robot link as described by Stavenuiter (1989) and Kruise (1988). It is
constructed as a long aluminum strip (190 x 6 x 0.4 cm) driven by a DC
motor. When controlled as a rigid system, the flexible robot fink will
heavily vibrate. Therefore, the vibrations and bending have to be taken
into account in the controller design. The bending of an accelerating
link has been described by Fukuda (1983) as:

W(rt) = N Yo(r) Ma(t
(r.t) n§=:1 (N Mn(t) (1)
where:

Ya(r), (%Elled the 'mode shape’ function, describes the shape of the arm
atits n™ resonance frequency.

Mn(t), the modal function, is a time dependent function which may be
described by:

of Mi + 2z i My + My = —A & (5)
where:

wi = the 1™ resonance frequency
& = Is the acceleration of the arm
zi and A; are arm dependent parameters

The combination Yi()Mi(t) is called a mode. Clearly the mode shape
function cannot be controlied. However, the flexible arm can be made
to rotate like a rigid one by controfling the acceleration in such a way
that the modal function decays rapidty. In practice, it is not possible to
control an infinite number of modes, but the model of the arm can be
simplified by assuming that the motor bandwidth is less than wme, which
implies that excitation of frequencies higher than wme may be disre-
garded. Furthermore, higher modes tend to have smaller amplitudes
and therefore, they may be disregarded as well.

Simulations by Kruise (1988) indicate that control of the first three
modes ylelds a satisfactory response. Furthermore, as these modes are
independent, the control signa! for the entire system can be computed
by adding the control signals for the three modes. Taking the Laplace
transform of (5) yields:

S?Mi + 2ziisM; + w’M; = —Ais®D (6)
which omitting subscripts, can be written as
2
My ZOM oM
s ¢ @)

This equation can be translated into the block diagram of fig. 8. The
modal function M is controlled by using state feedback, where the states
are defined to be &, fM and ijM wheref M stands for:

t
IMar
0

From these states only & can be measured, fM and {fM have to be
estimated. The estimation is updated by measuring the vibrations of the
arm by means of the strain gauges. In the case that three modes are
considered to contribute to the vibrations of the arm, three pairs of strain
gauges are used. A similar controller and estimator is implemented for
each mode. The controller and estimator for one mode is depicted in
fig. 8.

In this case a quite natural parallelism Is present that may be translated
into a four transputer network configuration. The calculations of each
mode will be assigned to one slave transputer. The master transputer
collects the data and performs preliminary data analysis. This configu-
ration may be represented as illustrated in fig. 9.

The use of transputers makes it necessary to use parallel programming
techniques. The transputer environment may be programmed in Occam

L Flexibie robot Ilink]

- N
r +‘ 1

L i L L
1 2

g
g
o
be]
L=
¥
>
1
™
%
L+
—
4
»
vt
—_—

H—

e

Fig. 8 One mode estimator and controller

(the preferred parallel transputer language) or in parallel C. Methods of
parallel programming are given in Bakkers (1988, 1989). Code from
different programming languages may be cast into an Occam harness
to exploit the parallelism between processes.

INPUT-OUTPUT

v

MASTER

N

SLAVE 1 SLAVE 2 |SLAVE 3

Fig. 9 Transputer network configuration

5.1 Natural system parallelism.

In the case of the flexible robot parallelism Is naturally obtained by
distrubuting the tasks of calculating the esitmator and the controller of
the three vibration modes over three transputer. This way the natural
parallelism of the different modes s reflected in the architecture of the
transputer system as illustrated in fig. 9. Because this Is not a rule that
can be applied to any system, this technique should be considered an
ad-hoc technique. The advantage Is that the processing speed remains
the same whether one or ten modes are calculated, of course requiring
one or tentransputers. The combination of this ad-hoc system allocation
together with the basic building block method, to be discussed in the
next section, has been applied to the fiexible robot arm.

6 THE BASIC BUILDING BLOCK METHOD

A systematic way to introduce parallelism, Is to start with very small
processes and build a system with these elementary processes. This
approach Is similar to methods used im simulation programs. The
internal scheduler onthe transputer will realize parallelism while running
these processes. if this philosophy is apptied to the controlier design of
the flexible arm we can realize the controller of fig. 9 with the aid of only
five basic elements i.e.

an integrator block: int
a summer block: sum
a minus block: min
a gain block: gal

a splitter block tee

Lets first define these basic elements and then write the controller
program using these basic elements.

PROC tee (CHAN OF REAL32 in, out0, out1)
REAL32 x :
WHILE TRUE
SEQ in
in?x outl
PAR
out0 ! x
out! ! x:

—out0

SPLITTER

PROC gai (CHAN OF REAL32 in, out, init)
REAL32 xk :
SEQ
init 7 k —— GAL —-
WHILE TRUE
PRI ALT fm N
init ? k
SKIP
In?x
out!k*x:

GAIN

PROC sum (CHAN OF REAL32 int, in2, out)
REAL32 x1, x2 : ‘“‘q,
WHILE TRUE out
SEQ T b

PAR
int 7 x1 anj

in2 7 x2 SUMMER
out! x1 + x2:

PROC min (CHAN OF REAL32 int, in2, in3, out)
REAL32 x1, x2, x3 :
WHILE TRUE

inl——_)—
SEQ - oyt
PAR in2—{ ¥ L—»

in1 7 x1 13

N2 ? x2
i3 ? x3 MINUS

out ! -((xt + x2) + x3):

PROC int(CHAN OF REAL32 in, out, init)
REAL32 x.t : -- STATE
SEQ in out
init 7 x;t -- INITIALIZE STATE AND TIME = INT |—
WHILE TRUE
PRI ALT L ait
Init ? x;t - INTEGRATOR
SKIP
TRUE & SKIP
REAL32 dx :
SEQ
PAR
tn?dx - Input in parallel
out ! x -- with output
Xi=X+ (dx*t):

The one mode estimator and controller for the flexible robot arm as
ilustrated in fig. 8 may be converted to consist of the basic building
blocks mentioned above. The resulting block diagram s illustrated in
fig. 10. The sign of some of the GAIN blocks has been changed to
standardize on one SUMMER block. Note that the insertion of the
SPLITTER blocks Is necessary because the Occam channels are point-
to-point connections. Installation of a SPLITTER block looks like a solder
joint.

After the definition of the basic building blocks, the complete calculation
process for one mode looks like the following Occam process. The
external channels 1[13] and the internal channels D[27] are not men-
tioned in the block diagram to avold cluttering.

structure is the best approach to

str [ga1] realize the parallel architecture.

M - However, ad-hoc parallelism, as

strg — 5 =1l Lo usgdtin the c?'nlriol tz:]thg ﬂ(:xible

> ga - robot arm, will give the best per-

= S"‘)l__r_' *'l’ —>—r:,|,—| i formance, because it minimizes

str3r— 5 T w2d ++ l the inter-transputer communica-
Ha U tion,

+ -L1 [ga1] z > INT > The basic building block tech-

nique together with the recogni-

+Y +4 tion of dedicated parallelism

1nd - = >4 INT T quickly results In an error-free de-

T sign. For the design of more

>) T ‘f f "general purpose"’ software for

> Py 18 higher levels of the controtier, the

——)l:l_l automatic task allocation pro-

“{gal € gram still has to be refined further.

lgat ¢ T imum f -

< wi_,b_J he optimum scheduler for real

time systems is the deadline
driven scheduler, it is recom-

mended that this scheduler be im-

Fig. 10 Basic building-block diagram for one mode

PROC calc ([4]JCHAN OF REAL32 in, CHAN OF REAL32 outM,
[13]CHAN OF REAL32)

[27JCHAN OF REAL32D :

PAR
gai { in{0], D[0], 1[0])
gal (in[1], D[1], 1[1])
gai (in[2], D[2], 1{2])
gal (in[3], D[3], 1[3])
min (D[0], D{1], D[2], D[8])
min (D[3], D{4], D[5], D[9])
sum (D[6], D{[7]., outM)
gai (D{8], D[12],1{6] }
gal (D{10], D[6], 1[4])
gal (D[11], D17], 1[5])
tee (D[9], D[13], D[14})
sum (D[t2], D[13}, D[15])
sum (D[16], D{14], D[17])
gal (D[18], D[5], 1[10})
gal (D[19], D[4], 1[11])
tee (D[15], D[20], D[21])
int (D[17], D[23], 1[9])
sum (D[22], D[24], Df26})
gai (D[20], D[22}, 1[7])
gai (D[21], D[16},1[8])
tee (D{23], D{24], D[25])
tee (D[25], D{10], D[18])
int (D[26], D[27], I[11])
tee (D[27]), D{19], D[11]) :

With these Instructions the scheduler of the transputer can go to work
and schedule all these parallel processes for execution. The advantage
of this method Is the speed of the development of the control program.
The above program Is for the control of one mode, therefore this
program is assigned to one dedicated transputer for every mode that
needs to be controlled. There are, however, some remarks to be made
about this design method. Because a large number of building blocks
are interconnected, there is a danger of deadlock. It Is a property of
so-called I/O-parallel blocks, that if combined into networks, they will
exhibit deadlock free properties. An I/O parallel biock executes the input
and output in parallel and not sequentially. The careful use of a few
IfO-paraliel blocks in a network will result in a deadiock free behavior of
the network. For that reason the integrators in fig. 10 are I/O parallel as
indicated in the corresponding Occam program, resulting in a deadlock
free controller.

7 RESULTS CONCLUSIONS AND SUGGESTIONS

The controller for the flexible robot arm has been implemented on a
number of different processors. The results varied as follows:

280 + co-processor: 16 Hz
10 MHz AT + co-processor 116 Hz
4 T414 transputers 1000 Hz
4 T800 transputers 4500 Hz

For the architecture of the system was as illustrated in fig. 9. The actual
controller was implemented using the basic building blocks technique.
The overall conclusion of the experience gained over a number of
projects Is that the application of transputers allows the design of
high-performance control systems. For complex systems the layered

plemented in future processors. A
sub-optimal solution has been
presented, where the timer
process of the transputer is used
to guard the timing sequence. The
transputer with its built-In scheduler may at present be considered the
best state-of-the-art implementation of a parallel buillding block for the
realization of control systems.

8. REFERENCES

Bakkers, A.W.P. (1989) editor of: Applying transputer based parallel
machines. Proceedings of the 10th Occam User Group Technical Mest-
ing, 3-5 April 1989, Enschede, Nethetlands.

Bakkers, A.W.P. (1988). Application of parallel processing to robot
control. Proceedings of the First International Conference on Robot
Technologles, TECHRO'88, September 19-26, 1988, Djunl, Burgas,
Bulgaria.

Bakkers, A.W.P, R.M.A. van Rooij and L. James, (1987). Design of a
real-time operating system (RTOS) for robot control. Proceedings of the
7th OCCAM User Group, Grenoble France, pp 318-327.

Bakkers, AW.P. and W.L.A. Verhoeven, (1986). A Robot Control
Algorithm Implementation in Transputers. Intelligent Autonomous Sys-
tems Conference, Amsterdam, pp 118-122.

Fukuda, T and Y. Kuribayashi, (1983), Precise control of flexible arms
with reliable systems. Proc. Int. Conf. on advanced robotics, Japan ind.
Robot Assoc., Tokyo, Japan Vol 1 pp 237-244.

Hilhorst, R. (1987). Parallelisation of Computational Algorithms for a
Transputer Network. Proceedings of the 7th OCCAM User Group Tech-
nical Meeting, Grenoble France, pp 420-424

Hoare, C.A.R. (1978). Communicating sequential processes "CSP".
CACM, vol. 21, No.8, 666-677.

JSME, (1989). The international Conference on Advanced Mechatron-
ics. May 21-24 Tokyo, Japan, The Japan Soclety of Mechanical En-
gineers.

Kruise, L, J. van Amerongen, P Lohnberg and M.J.L. Tiernego,
(1988). Modelling and control of a flexible robot link. Proc. IUTAMAFAC
Symp. dynamics of controlled mechanical systems.

Liy, C.L. and J.W. Layland, (1973). Scheduling Algorithms for Multi-
programming in a Hard Real Time Environment. JACM, vol 20 (1), 46-61.
Stankovic, John A., Misconceptions About Real-Time Computing A
Serious Problem for the Next-Generation Systems, IEEE Computer,
October 1988, 10-19.

Stavenuiter, A.C.J., G. ter Reehorst, and A.W.P. Bakkers, (1989).
Transputer control of a flexible robot link. Microprocessors and Micro-
systems Vol 13 No 3, April, 227-232.

Welch, P. (1987). Managing hard real-time demands on transputers.
Proceedings of the 7th OCCAM User Group, Grenoble France, pp
135-145.

Wijbrans, K.C.J., J. Meijer, and A.W.P. Bakkers, (1989). Real-time
Sampling Sub System for the PC/AT, to be published in Journat A, vol
30, nr 3.

