MRAS : Model Reference Adaptive Systems

1. INTRODUCTION

In recent years one of the major topics of research is
that of adaptive control systems. A sufficiently general
definition of adaptive control is difficult to give, be-
cause there are many structures which may be called
adaptive in some sense. For our purpose the following
definition is suitable :

“An adaptive system is a system where in addition to
the basic (feedback) structure, explicit measures are
taken to compensate for variations in the process
dynamics or for variations in the disturbances, in order
to maintain an optimal performance of the system.”

The additional measures mentioned in this definition
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may either be adjustment of the controller parameters
or generation of additional input signals. This leads to
parameter adaptive systems and signal adaptive sys-
tems (Fig. 1a and 1b).

Another distinction which can be made is between
direct and indirect adaptive systems. In indirect
adaptive systems the adjustment of the basic control
system is based on on-line identification of the pro-
cess, followed by optimization of the controller para-
meters, while in direct adaptive systems no explicit
identification can be recognized. The basic structure
of an indirect adaptive system is given in fig, 2.

A direct adaptive system is, for example, a system
with the structure of figure 1a where the parameter
adjustment is based on on-line minimization of a
criterion with the aid of hill climbing techniques.
Model Reference Adaptive Systems (MRAS) basically
also belong to the class of direct adaptive systems. Be-
cause MRAS can also be applied for identification it
is possible to use MRAS in an indirect adaptive system
as well.

Let us start by considering direct adaptive systems. In
this case all structures have in common that the
desired (optimal) performance of the system is de-
fined by a reference model. This reference model,
which has as input the system’s reference signal,
generates an output signal with the desired shape of
response. The “conventional” control loop is adjusted
by an adaptation mechanism which attempts to make
the responses of process and reference model identical.
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In fig. 3 one of the earliest model reference adaptive
systems is depicted. This system, developed by
Whitaker et al. [15] was used for aircraft control.

A series reference model generates the desired res-
ponse. In order to realize a similar response of the
process, the loop gain of the feedback control system
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should be as high as possible. This gain is automatically
increased, until a limit cycle detector detects that the
system is on the border of instability.

A presently commonly applied structure uses a parallel
reference model (fig. 4). In this structure either the
difference between the process output and the refer-
ence model output, the signal e, or the difference be-
tween the states of the process and of the reference
model, the vector e, is minimized.

2. DESIGN METHODS
2.1. The sensitivity concept

There are several approaches to designing the adaptive
controller. The earliest designs use the sensitivity
concept. The adaptive laws are derived as follows.
Subtraction of the output signal of the process, yp,
from the output signal of the reference model, ym,
yields the error signal e, which is used to define a
quadratic criterion C :

1 T 2

Suppose that variations in the process dynamics can
be compensated by adjusting the parameter Ki. In
order to minimize C the parameter Ki has thus to be
adjusted. The variations of Ki are chosen to be pro-
portional with the gradient of C with respect to Ki.

AKi=-a %S (2)
aKi

A continuous adjustment law is found by differentiating

eqn. (2) with respect to time. This yields

aym _ (7)
oKi

it follows from (5) and (6) that
dKi _ , . 2yp (8)
dt aKi

The sensitivity coefficient E—’%{-P— can easily be generated
oK1

by a so-called sensitivity model.
Let the process be described by the differential
equation

n n-1

dypyg_, 4 ypy 4k, R4k yp=1u (9)

n n—]. 1 1 d 0
dt dtn— t

Differentiation of this equation with respect to Ki

yields the differential equation of the sensitivity
model

n n-1 i
% oyp,g 47 oyp, g, 2ve-dyp
det o Ki dtn—l aKi aKi dd

(10)

Apart from the input signals both differential equa-
tions (9) and (10) are identical. The output of eqn.
(10) is the required sensitivity coefficient. Because

the coefficients of eqn:s (9) and (10) are in general un-
known or variable, the sensitivity coefficient

a—ﬂ_’— may be approximated by —ay.ﬂ, which only

aKi aKim

requires knowledge and availability of coefficients

and signals from the reference model.

A major disadvantage of the sensitivity model approach
is that the stability of the total system cannot be
analytically proved. Simulation experiments have to
demonstrate the system’s stability and should indicate
the border of stability.

Example

A simple example will clarify the procedure. Let the
process be described by the transfer function
Y
H(s) = P - Y(@) (11)
52 + a’ps +1 Us)
A reference model of the same order and structure

is selected with constant parameters which give the
desired response. The variable or unknown process

dKi _ _,d aC (3) parameters can be compensated by the controller
dt dt aKi gains Ka and Kb. This leads to the differential equa-
Substituting eqn. (1) into eqn. (3) yields tion of process plus controller :
. 2
dKi 2 1 2 : d d
€l = a2 (= e 4 9 Y¥+a Y yy=bu 12
dt aKi (2 ) ) 42 Pt 77 % (12)
=-ae 25 (5) where
oK 4K (13)
a_=a
Because P P a
e=ym-yp 6) =4
and bp = bp +Ky, (14)
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The sensitivity models follow from eqn. (12) :

2

4% sy ., d 8y a2y _ _dy (15)
de2 23, P dt 2a, day dt

2

4% ey, d By 3y _y (16)

2 P
dt abp dt abP abp

The parameter adjustment laws are thus

d
i —ae B (17)
P 2a
P
. ?
b _=fe p (18)
P ab
P
or
2
i =—ae Jm (19)
P da
. 2
b =pe m (20)
P b

Assuming that variations in the controller parameters
due to the adaptation are fast compared with varia-
tions in the process parameters it follows that

K, =i, (21)
and

2.2, The stability concept

The automatic parameter adjustment, based on adjust-
ment laws like eqn. (8), introduce multipliers into

the system and make the total system essentially non-
linear. Linear theories fail to prove stability.

In recent years Liapunov’s stability theory for non-
linear systems, which dates from 1892 [9], as well as
hyperstability theory [11], have been successfully
applied to design stable MRAS. Although the designs
based on Liapunov’s stability theory and on hyper-
stability theory follow different ways, the adaptive
laws which are found are similar. Based on Liapunov’s
second method the adaptive laws are derived as
follows.

Describe the process and the reference model in state
variables

x =A x_+B u (23)
x =A_x_+B u (24)

where the index p belongs to the process and the index
m to the reference model, and

AP = A;) +K, (25)
Bp = B;, +Ky (26)

and where A;), B p are the varying process parameters

and K and K| are the adjustable controller gains.
a

Subtracting eqn. (23) from eqn. (24) yields the error
differential equation

é=Am§+A}_(p+B1_1 (27)
where

€= Xy~ %p (28)
A=Ay -A, (29)
B=B, -B, (30)

Equation (27) is a non-linear differential equation be-
cause of the adjustment of K a and Ky according to

equations like eqn. (8). In order to design a stable
MRAS it is necessary to prove that e > 0 for t »oo;
in other words e = 0 must be a stable equilibrium.
The most simple positive definite Liapunov function,
which not only contains the state vector e, but also
the additional state vectors a and b, which contain
the non-zero elements of A and B, is

V=eTPe+alaa +bTfb (31)
where P is an “arbitrary” positive definite symmetric
matrix and a and § are diagonal matrices with positive
elements, which will be shown to determine the speed
of adaptation. The system is asymptotically stable
when

V=dv/dt<0 (32)

Differentiation of eqn. (31) and substitution of eqn.
(27) yields

dv/dt = - gTQg + 2§TPA1_cp +23 g + ZETPBQ
+2b Tﬁk_) (33)
with

Al 34
~Q=A_P+PA_ (34)

When Q is an arbitrary symmetrical positive definite
matrix the system is asymptotically stable for e (or-
dinary stable for a and b), when

gTPAgp + i_lTag =0 (35)
and
eTPBu +bTpb =0 (36)

This yields the adjustment laws

. 1 n

ni= T 7 (kzz 1 Pnk k) Xi (37)
ni

. 1 n

bni = - E——: (kzl pnk ek) lli (38)
nl

The elements p_j of the P matrix are found after

selecting Q and solving eqn. (34).
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Example

The design procedure will be illustrated again with the
process of eqn. (11). Let the process plus controller

be described by

5(2=—x1—(a£)+Ka) ‘x2+(bl;+Kb)u (40)
or
0 1 0
Ap= 5 andbp= ) (41)
-1 —(ap+Ka) bP +Ky
A reference model with the same structure is chosen
with
0 1 0
A= and bm = (42)
-1 -14 1
This yields
0 0 ' 0
A= ) and b= . (43)
0 -Ld+(as+K) 1-(b,+Ky)

Because only a5, # 0 and b, # 0 the adjustment laws
simplify into

- i
297 = - ——(P21%1 + P2282) X (44)
oY) '

by=- 51; (Pp1e + Ppoeo) U (45)

The elements P21 and P22 of the matrix P are found

by solving P from eqn. (34) after selecting an arbitrary
positive definite matrix Q. Select for example

4 08
Q= (46)
0.8 1.6

This yields Py =1 and Py = 1.

After some searching it may also be possible to find
a positive definite matrix Q belonging to a candidate
matrix P.

From eqn. (43) it follows that

agy = -1.4+ (al; +K,) (47)
Under the assumption that the controller parameter

adjustment is fast compared with variations in the
process parameters it follows that

and similarly that
K, = -b, (49)
Thus
1 .t )
K,= "o b (e +4) x, dr +K,(0) (50)

Ky = 451; f(; (e +&) udr +K(0) (51)

Remarks

— The adaptive laws derived above are sometimes
referred to as integral adaptive laws because of the
integration in equations (50) and (51). By choosing
another Liapunov function the proportional plus
integral adaptive law may be found, which may in-
crease the speed of adaptation but also augments the
sensitivity for noise. This leads, for instance, to

K, = K,(0) -a’ (e+é)x, - éz folexé)xydr  (52)

— The adaptive gains @ and § may be chosen arbitrarily;
stability is guaranteed. However, smooth parameter
adjustment requires some care with tuning of the
adaptive gains.

-- Comparing the adjustment law (19) with, for
instance, (44) shows the following differences between
the sensitivity approach and the stability approach :
Instead of using only the signal e, the stable adaptive
laws use the expression

pp1e + p22é (53)

The derivative term has a positive effect on the

system’s stability. It can even be shown, by applying

hyperstability theory, that the total phase lag,

irrespective of the order of the system, is never larger

than 90 degrees due to these derivative terms.

Instead of the sensitivity coefficient 9Y the state Xy
%a

is used in the stable adaptive law (50). Comparison of

both signals for one particular parameter show that

the shape of these signals is similar, but that there is

a phase lag in the sensitivity coefficient, which further

deteriorates the system’s stability.

— Because the choice of Q is arbitrary and the

method gives only sufficient conditions for stability

(they need not be necessary), there is some freedom

in varying the elements of P to obtain an optimum

performance.

3. IDENTIFICATION AND ADAPTIVE STATE
ESTIMATION

When the process and the reference model are inter-
changed, the adjustment laws derived in the foregoing
can be used for identification as well. The parameters
of an “‘adjustable model” have to be made equal to
the parameters of the process.

It has already been mentioned that the adaptive sys-
tem is guaranteed to be asymptotically stable with
respect to e, but only ordinarily stable with respect to
a and b. This would imply that correct estimates of the
process parameters cannot be guaranteed. However,
dV/dt can only be equal to zero when ¢ = 0, which
implies that either x; = X, Or Xy = X, = 0and u=0.
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It can be seen that when u is sufficiently excited the
equilibrium e = 0 can only be reached when a= 0 and
b= 0. Because ¢ is guaranteed to converge to zero this
also 1mphes convergence of a and b to zero and thus
successful identification.

It can be shown (see Section 4) that noise on the
process states does not lead to biased parameter estim-
ates. The momentary values of the parameters may
fluctuate but in the mean the parameter values are
correct. By selecting a suitable speed of adaptation
smooth and unbiased parameter estimates can be ob-
tained.

The same structure can also be used for adaptive state
estimation with good noise reduction. Because e ~ 0
the states of the adjustable model will converge to the
process states. When the speed of adaptation is low,
noise on the process states will hardly influence the
states of the adjustable model.

In the literature extensions of this principle are given.
Asecond adjustable model can be added, which allows
fast identification of the process parameters, also in
the presence of noise [10,11]. It is also possible to
use a second adjustable model, especially to improve
the state estimation. This allows adaptation of the
amount of filtering depending on the level of the
noise [3].

4. APPLICATION OF MRAS IN PRACTICE

Until now it has been assumed that

1) process and reference model are of the same order
and structure;

2) there are no nonlinearities;

3) there are no stochastic variations in the states of
the process or its inputs.

In practice, none of these assumptions will be com-

pletely true. In this section a few solutions will be

given to solve these problems.

Ad 1)

It has been shown [2] that structural differences bet-

ween process and reference model are not disastrous

as long as the reference-model structure contains the

major process dynamics and simple adjustment rules

are used. The adjustment laws (37) and (38) are such

simple laws. More sophisticated algorithms, which

give a better performance in the ideal case, fail when

only small differences between the structures of

process and reference model are present.

Ad 2)

Nonlinearities in the process (or in the reference

model) can partly be treated in a way similar to the

structural differences. Nonlinearities which can be

considered as variations in the parameters of a

simplified model will be compensated for by adjust-

ment.of the controller parameters. This requires a

relatively high speed of adaptation.

More problems are caused by nonlineatities of the

saturation type. This type of nonlinearity is quite

common to amplifiers, in valves which are completely

open or closed, et cetera. In principle there are two

possibilities for dealing with this problem :

— switching off the adaptation as long as the element

is saturated;
— modifying the input signal of process and reference
model so that no saturation will occur.
The latter method has been successfully applied in an
adaptive autopilot for ships [3,6]. No modifications
of the adaptive loop itself are required and the proof
of stability also remains unchanged. The non-linear
element is in fact removed from the control loop.
Ad 3)
Noisy signals, due to disturbances or noisy measure-
ments, are a problem when MRAS is applied for adapt-
ation. This can easily be demonstrated. The noisy
process states gp’ and thus the error signal %, can be

denoted as follows :
H=% +0 (54)
¥=e+o, (55)
where 0, and g are supposed to be stochastic signals

with zero mean.

Because

€= Xy~ (Xp +0y) (56)
it follows that

0. =0y (57)

With the adjustment laws (37) and (38) this leads to
expressions which contain, for instance,

+ 0, 0. (58)

TX. = ex. + eiOi’x + eiUi, i,e¥i,x

171p 11p

Besides the desired term €X;p» €qn (58) contains two

terms with zero mean (because g has a zero mean)
and one term with non-zero mean :

2
%,e%,x = 0 ix (59)
Integration of this term will lead to controller para-
meters which drift away when the input is not sufficient-
ly excited.
This problem is not met when MRAS is applied for
identification. Because the model states will be noise-
free there will be no cross-correlation term.
Measures which can be taken to suppress the influence
of the noise are :
— switching off the adaptation when there are no set
point changes;
— this can be achieved more smoothly by multiplying
the adaptive gains by

1
— 60
1+T (60)
where T denotes the time after the last set point
change;
— using x_ instead of x5 in equation (37). Although
theoretically not correct, this approach gives good
results in practice;

— using gp instead of X5 where J_?P is obtained from

an adaptive state estimator as described in the form-
er section;
— the terms oi,e

and 0; 4 can be on-line estimated and
9
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their products can be used to compensate for the
drift caused by the terms of eqn. (59);

— a small dead band in the adaptive loop is also very
effective, although the problem remains of defining
as sharply as possible its width. The use of noise re-
duction filters is also possible. Care has to be taken
for the destabilizing effect of these filters.

In a particular application a choice has to be made of

one or a combination of these measures.

5. REALIZATION OF MRAS

More sophisticated control systems can most easily be
implemented with digital hardware. In the former
sections the continuous time approach has been follow-
ed. Assuming that the process itself is a continuous
system, there are two ways to attack the design of
discrete MRAS.

1. Use the continuous time algorithms and choose a
sampling interval which allows the discretization to
be neglected. )

2. Describe the system in discrete form and derive
discrete adjustment laws.

The first approach requires no further explanation.

The second approach has been described by several

authors. Landau has described discrete MRAS based

on hyperstability theory[13,14].

The method of Liapunov, used in the foregoing, can .

be used as well, but requires a small modification in the

structure. This is illustrated in fig, 5.

This structure is called series parallel because the refer-

ence model is partly in series and partly parallel with

the process. This leads to the following equations :

Xin(kt1) = Apx (k) + B u(k) (61)
xp(k1) = A x (k) + B (k) (62)

where AL, AP, B,
forming the continuous time equations (23) and (24).
Note the use of xp(k) instead of x _ (k) in eqn (61).

and BP are obtained after trans-

It follows that

e(k) = x, (k+1) - x,(k+1) (63)
e(k+1) = Alk)x,(k) + B(k)u(k) (64)
with

Adk) = A (k) - A(K) (65)

Fig. 5. Discrete series parallel MRAS

B(K) = By (k) - B (K) (66)
A Liapunov function V(k) is defined :

V(k) = ¢! (k)Pe(k) +a’ (k)aa(k) + bT(k)b(k) (67)

where a, b, @ and § are defined similarly to eqn. (31).
Because

aV(k) = V(k+1) - V(k) (68)

it follows that

aV(k) = - (k)Pe(k) + " (k+1)PA(k)x, (k)

+ [a(k+1)+a(k) Tafa(k+1)-a(k)] + e (k+1)PB(k)u(k)
+ [b(k+1)+b(k)] T B[b(k+1)-b(k)] (69)

The first term of eqn. (69) being negative definite
(when P is positive definite) it follows that AV(k) is
negative definite when

baylk) = ai(kc+1) -ayfl) = - 1 [él pap e1(k+1)] (k)
' (70)

oK) = byk+1) - byt = - 1 (£ pa egksD)] ()
1

(71)

Compared with continuous MRAS the following has
changed :
— Because x_ (k+1) is only a function of 1_(P(k) and

not of x (k) the differences between x (k) and ;_cp(k)

remain small. They can only diverge during one sample.
This allows a high adaptive gain. In the presence of
noise this advantage disappears because noise limits
the adaptive gains.

— Although not theoretically supported, it has been
shown that even better results can be obtained by
making the states of the model and the states of the
process not equal to each other at every sample, but
only, for instance, once every five samples. This com-
bines the good properties of parallel and series parallel
systems [7,8].

— The advantage of unbiased parameter estimates
which is realized by applying a parallel MRAS structure
for identification is lost in the case of series parallel
MRAS. It can easily be seen that there is cross correla-
tion of the noise on the process states and noise on
the error, both for adaptation and identification.
Landau has shown that the algorithms which are
found with the structure of fig. 5 are similar to the
algorithms obtained by applying the least squares
method [13).

6. CONCLUSIONS

Algorithms have been derived for continuous as well

as for discrete MRAS. Because, strictly speaking, these

algorithms are only valid in an idealized case, it was

also necessary to consider the consequences of

- struciural differences between process and reference
mode
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— nonlinearities

— noise.

Although for some of the solutions which have been

given the proof of stability is not valid anymore,

experience has shown that they work in practice. At

the Control Laboratory some successful applications

have been realized :

— an adaptive autopilat for ships [1,2,3,6];

— attitude control of a satellite [7];

— speed control of a Ward Leonard system with vary-
ing load [8];

— adaptive control of the load frequency control in a
power plant [5,12].

In the literature several other applications can be

found.
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